2012
Abstract
We investigate the link between agricultural productivity and net migration in the United States using a county-level panel for the most recent period of 1970-2009. In rural counties of the Corn Belt, we find a statistically significant relationship between changes in net outmigration and climate-driven changes in crop yields, with an estimated semi-elasticity of about -0.17, i.e., a 1% decrease in yields leads to a 0.17% net reduction of the population through migration. This effect is primarily driven by young adults. We do not detect a response for senior citizens, nor for the general population in eastern counties outside the Corn Belt. Applying this semi-elasticity to predicted yield changes under the B2 scenario of the Hadley III model, we project that, holding other factors constant, climate change would on average induce 3.7% of the adult population (ages 15-59) to leave rural counties of the Corn Belt in the medium term (2020-2049) compared to the 1960-1989 baseline, with the possibility of a much larger migration response in the long term (2077-2099). Since there is uncertainty about future warming, we also present projections for a range of uniform climate change scenarios in temperature or precipitation.
Abstract
Abstract
Abstract
2011
Abstract
Abstract
2010
Abstract
Abstract
Abstract
Abstract
Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately −0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming.
1990
For a full list of publications
Contact
Center for Policy Research on Energy and the Environment
Princeton School of Public and International Affairs
313 Robertson Hall
Princeton, NJ 08544
omichael@princeton.edu
Assistant: Charles Crosby
ccrosby@princeton.edu